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ABSTRAKSI 

 

Tulisan ini dirancang untuk menjelaskan multikolinearitas (M/C). Hal 

ini disebabkan keberadaan multikolinearitas bisa merusak model. 

Keberadaannya menjadi penyebab kegagalan dalam memperkirakan estimasi 

least squares karena koefisien regresi dan varians menjadi tidak menentu. 

Secara harafiah, M/C menunjukkan hubungan linear antar variabel 

independen. Meskipun banyak cara guna mendeteksi keberadaan M/C, tidak 

ada satu teknik pun yang mampu menunjukkan penyebab M/C. Namun, salah 

satu cara untuk mengobati M/C adalah dengan menggunakan teknik ridge 

regression. Teknik ini dirancang untuk menghasilkan varians minimum dalam 

regresi. Akhirnya, jika keberadaan multikolinearitas tidak mengurangi 

kebaikan model, keberadaannya M/C bisa diabaikan.   

Kata kunci : Multikolinearitas (M/C). Estimasi Least Squares, Koefisien 

Regresi dan Varians Tidak Menentu. 

 

 

I. INTRODUCTION 

 

 This paper is a fairly tedious and replicative paper, and deliberately so. 

This paper provides no new theoretical implications, offers no new 

interpretations, and even draws no new implications of Multicollinearity (M/C) 

discussion. Instead, this paper is provoked by some inquiries about why 

multicollinearity has to be tackled in a regression model. The answer is usually 

as follows: “when developing a classical model, it is unusual that our data 

estimation conforms just exactly to the theory underlying the model. Many 

problems often arise when dealing with a model construction, data estimation 

and even with interpretation. One of the most prevalent snags is the presence of 

multicollinearity. Hence, it is important to conceive the presence of 

multicollinearity so an imprecise deduction can be avoided.”  

  This paper henceforth concentrates its energies on providing a careful 

discussion of the presence of multicollinearity in a system of a regression 

model. Another is to offer a careful analysis of how to detect and to solve the 

multicollinearity problem. To this extent, this paper is organized in the 

following manner. Following this introductory Section One, Section Two deals 
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with an overview of Multicollinearity. Section Three identifies a degree of 

multicollinearity often appearing in a regression. How to detect 

multicollinearity is the subject of Section Four. Section Five commences the 

remedies to rectify the problem. It discusses in detail the ridge regression as a 

means of solving the multicollinearity problem. Finally, the conclusion of the 

paper is presented in Section Six. 

 

 

II. WHAT IS MULTICOLLINEARITY? 

 

 One of the assumptions of the classical regression model is that the 

matrix of independent variables, X, has full rank so (X'X) 1  exists. It is 

therefore there is no exact linear relationship between any of the independent 

variables in the model. This linear relationship, if happens, actually is adopted 

by some econometricians to reflect model or data problems. This is called 

multicollinearity.
1
  If there is an exact linear relationship, it implies that such 

independent variables are exactly collinear. This means the correlation 

coefficient for these variables is equal to unity (rxixj  =1)
2
, so variances go to 

infinity.
3
 Hence the parameters become indeterminate because it is impossible 

to obtain numerical values for each parameter separately and the method of 

least squares breaks down. 

 Now please consider a simple example, that is, total monthly sales 

being detected to be influenced by, at least, three independent variables such as 

price of products in thousand dollars (X1), weekly sales promotion frequency 

(X2) and monthly sales promotion frequency (X3). Variables X2 and X3 are 

extremely collinear because variable X3 is exactly four times variable X2. Each 

parameter makes perfect sense if only one of the collinear variables appears in 

the model. However, when these two variables appear simultaneously, then we 

face, at least, one difficult situation, viz., in interpreting the results. The 

coefficient of the X2 variable is known as a partial regression coefficient which 

can be interpreted as the change in Y correlated with a unit change in X2, 

ceteris paribus. But, this ceteris paribus assumption is impossible to apply. We 

cannot keep all other variables constant because it looks false in such a model. 

                                                      
1
 Multicollinearity comes from three different words, multi- many, co - together and linearity - 

the quality of being in lines. Hence multicollinearity literally means linear relationships among 

many, as more than one, (independent) variables.  
2
 On the contrary, if the independent variables are not intercorrelated at all (rxixj  = 0 ), the 

variables are called to be orthogonal. So, covariance ( XiXj) is zero. Therefore, there is no 

problem with collinearity. 
3
 Consider variance in the case of two independent variables, viz., Var (k) =  

2
/ {(1-r 12

2
) Skk}. 
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It is obvious that once there is a change in X2, so does X3. As a result, we 

cannot compute the least squares parameter estimates. 

 It is clear that multicollinearity, as in above example, might be easy to 

discover. It can be seen apriorily from the model. But, in practice, we are 

almost always facing the more difficult situation regarding a high (and low) 

degree of multicollinearity. Multicollinearity arises when two or more variables 

(or combinations of variables) are highly (but not perfectly) correlated with 

each other (Ghosh, 1991, Maddala, 1992,  Pindyck and Rubinfeld, 1998, and 

Cooper and Schindler, 2006). The columns of the regressor matrix X are not 

orthogonal. This implies that the columns of X are linearly dependent.  Further, 

Schmidt (1976) defines multicollinearity is said to exist if the rank of the 

regressor matrix X is less than K, the number of regressor. If this happens, the 

least square estimator,  = (X'X) 1 X' Y , does not exist.
4
 When this  estimator 

does not exist, multicollinearity exists. But, seemingly, multicollinearity is not 

a condition that either exists or does not exist in economic functions, but rather 

a phenomenon inherent in most relationships due to the nature of economic 

magnitudes. However, the consequences of multicollinearity are that the 

sampling distributions of the  estimators may have large variances. When the 

variances are large , the estimators will be imprecise. The estimators will be 

unstable as well as the sample value will be far away from the true value. 

Therefore, the  estimators may be unreliable to apply. 

 Similarly, Judge et al (1985, p. 899) states: 

“Extreme multicollinearity exists when there is at least one linear dependency 

among the columns of X, and this means that the X matrix is less than full 

column rank”. 

 

This can be happened for several reasons, namely the existence of a physical 

constraint upon the explanatory variables, the poor implicit design as well as 

the lack of data observations. This situation may potentially cause the existence 

of multicollinearity in our econometric model.  

                                                      
4
 The proof is shown by Schmidt (1976) as follows: X'X is of dimension K x K and has the 

same rank as X. Therefore, if the rank of X is less than K, X'X is singular.  
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 For more detailed discussion, consider the following hypothetical 

matrices.
5
    

 

   X'X   (X'X)
1

        X'X 

 

 

case # 1                   
1 0

0 1









    

1 0

0 1









             1  

 

case # 2   
1 0 999

0 999 1

.

.









  

500 25 499 75

499 75 500 25

. .

. .













   0 001999.  

 

case # 3             
1 0 9999

0 9999 1

.

.









        

5000 25 4999 75

4999 75 5000 25

. .

. .













     0 00019999.

  

From above matrices, we see that case # 1 has orthogonal variables. In this 

sense, the explanatory variables (Xs) will be linearly independent. Hence the  

estimators will be the same as those given by simple regressions of Y on each 

X. This actually shows that we don’t  have any problem with multicollinearity. 

But, in practice, it is uncommon to have orthogonal variables in our collected 

data though we can set up our experimental designs.  

 In case # 2 and case # 3, we see that there are increasing correlations 

between the explanatory variables. It is evident that the covariances
6
 and 

determinants in case # 2 and case # 3 change dramatically. This situation 

therefore describes a linear relationship (multicollinearity condition) between 

the explanatory variables (Johnston, 1984, Ghosh, 1991, and Maddala, 1992). 

When multicollinearity appears, it becomes very difficult to precisely identify 

and interpret the magnitudes of the explanatory variables. In some cases, our 

estimated value may differ significantly from true value. Therefore the 

existence of multicollinearity, no doubt, will reduce our sensitivity in 

estimating the economic phenomenon. 

 Finally, we conclude that multicollineriaty is literally linear 

relationships among independent variables. This happens because the rank of 

the regressor matrix X is less than the number of regressors, K. So this implies 

that one of the regressors can have a linear (or perhaps “almost” linear) 

combination of the others. The presence of multicollinearity, in some cases, 

                                                      
5
 We reproduce the matrices that were firstly proposed by Johnston (1984). 

6
 Covariance is shown at the off-diagonal matrix.  
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disturbs our estimation and interpretation the model (Cooper and Schindler, 

2006, Hair et.al, 1998, Hair et. al, 2006, and Malhotra, 2004). 

 

 

III. PERFECT AND NEAR MULTICOLLINEARITY 

 

 We have discussed the existence of multicollinearity which may harm 

our model. From above discussion, it is easy to detect extremely collinearity 

appearing in our model. It is almost like “Black and White”. It is apparent. But 

what about the “Grey” collinearity (not extremely collinearity) which is 

perhaps the most difficult problem to detect. To understand this collinearity, we 

should be able to distinguish  a degree of multicollinearity that might exist in 

our model. 

 In general there are two major degrees of multicollinearity, namely, 

perfect multicollinearity and near multicollinearity.
7
 These degrees cause 

whether or not data problems can be easily detected. In some cases, they may 

produce whether or not our estimation and interpretation results are specifically 

defective.  

 As mentioned earlier, the matrix of independent variables, X, should 

have full column rank in order to avoid exact linear relationships among 

independent variables. If not, the variables are extremely correlated and the 

variances become infinite. When the rank of matrix X is less than the number 

of regression, K, this implies that one of the regressors is a linear combination.  

If this is the case, this actually reveals the presence of perfect multicollinearity.  

 Greene (2005) and Cooper and Schindler (2006) denote that the case of 

perfect multicollinearity is a serious failure of the assumption of the model, not 

of the data. For an empirical discussion, we may consider our previous sales-

promotion example.  

 Y = 1 + 2 X1 + 3 X2 + 4  X3 +   ………………………………. (1) 

where:  

  Y : total monthly sales in thousand dollars 

 X1 : price of product per unit in dollar 

 X2 : weekly sales promotion frequency in number of calls 

 X3 : monthly sales promotion frequency in number of calls 

 : error disturbances 

 

From the equation (1), it is impossible to catch individual effects of weekly 

sales promotion frequency and monthly sales promotion frequency. It is 

obvious that monthly frequency of sales promotion is the aggregation of weekly 

                                                      
7
 Some authors called exact multicollinearity instead of perfect multicollinearity. 
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frequency s.t. X3 = 4  (X2). This is actually a badly specified model, and it 

reveals that its failure has nothing to do with the quality of data involved. In 

this analysis, Greene (2005) concludes that no matter how much data are added 

in the model, we cannot estimate the parameters because of modeling and 

identification problem. In our case, parameters of our sales-promotion model 

are said to be unidentified.  Therefore, it is worth emphasizing that perfect 

multicollinearity, undoubtedly, deals with the construction of a regression 

model.   

 Schmidt (1976, p. 40-48) even further reveals that if the rank of the 

regressor matrix X is less than the number of regressors K, perfect 

multicollinearity exists. This situation means that one of the regressor is a 

linear combination. If this situation exists, it is impossible to solve the set of 

least square normal equation s.t. X'X  = X' Y. Thereby there does not exist a  

estimator which uniquely minimizes Sum of Squared Errors (SSE).
8
 When 

there is no unique solution for the least square estimators, the solutions for X'Y 

will be infinite (Johnston, 1984, p. 241). It is therefore very time consuming 

and useless to estimate the least estimators when perfect multicollinearity 

exists. 

 The common situation in econometric experiments, particularly with 

data problems, is one of highly but not perfectly collinearity. It is known as 

near multicollinearity or “almost” collinearity. This situation happens when the 

correlation coefficient, r,  becomes so high (close to 1, but not equal to 1) in 

absolute value. In other words, one of the regressors is “almost” a linear 

combination of the others. Unlike perfect multicollinearity which is easily 

detected from the model, near multicollinearity is relatively quite difficult to 

identify. 

 In the case of near multicollinearity, we can still compute the least 

square estimators because of the existence of non singular matrix. It is 

important to know that the matrix X'X is almost singular, but it is still not 

singular. This can be happened if linear relationships among independent 

variables are not equal to unity in absolute value (r 1).
9
 It is much more 

common for independent variables to be correlated with r  1. This becomes a 

statistical problem rather than a modeling problem because the difficulty in 

estimation is not on identification but on precision. It is apparent that the higher 

the correlation between the regressors, the greater the variances, then the less 

precise our estimates will be.  

 Technically, Schmidt (1976) explains the existence of near 

multicollinearity using the inverse of matrix X'X as follows: 

                                                      
8
 See Schmidt (1976, p. 41) for the proof.  

9
 See the formula for variance, in footnote 3.  
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 (X'X) jj

1   = 1/ {x j

'  [ I - X j

*  (X j

*'  X j

* ) 1 X j

* ] xj} ……………………..(2) 

 

The right hand side denominator is sum of squared errors when xj is regressed 

on X j

* . If xj is “almost” a linear combination of columns in X j

* , the sum of 

squared errors will be very small. Accordingly, the inverse matrix (X'X) jj

1   

becomes so large, therefore the least squares estimators have large variances. 

Finally, it is also clear that the  estimators will not be quite precise to use for 

estimating the model.
10

     

 It is clear from equation (2) that not all coefficients will be influenced 

similarly by collinearity. Suppose x j

'  [ I - X j

*  (X j

*'  X j

* ) 1 X j

* ] xj  = W, so the 

sampling variance of the least squares estimates is Var (j) = 
2
/ W. It is 

obvious that W is the sum of squared errors from multiple regression of the j- 

th independent variables on the other k-1 independent variables. Therefore sum 

of squared errors decrease with increasing collinearity between j- th 

independent variables and the remaining independent variables so that the 

sampling variances tend to rise. 

 Finally, not only does the presence of multicollinearity produce bad 

impact either on analyzing the model or on estimating the coefficients of the 

parameters, but also in some cases, it is not easily identified because there are, 

at least, two kinds of multicollinearity, viz. perfect and near multicollinearity. 

Perfect multicollinearity is a relationship when a linear combination (r = 1) 

exists. Meanwhile, if one of the regressors is “almost” a linear combination ( r 

< 1), this is the case of near multicollinearity. 

 To some extent, we can distinguish these multicollinearities by 

observing the model, identifying data and employing some manipulation 

techniques. We will discuss how to detect multicollinearity in the next section. 

But, multicollinearity, indeed, is not the source of problem otherwise it reduces 

standard errors substantially when dropping or more independent variables 

from the equation. However, no doubt, the presence of multicollinearity may 

cause our estimation becomes imprecise or even failed. Therefore it is 

important to realize this multicollinearity problem, since it is still possible to 

detect and cure the problems (Malhotra, 2004, and Cooper and Schindler, 

2006). 

 

                                                      
10

 Although the estimators are biased, their variances are sufficiently smaller than those of the 

least square estimates. If this is case, we face the “ridge regression” estimators. We discuss this 

later. 
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IV. MULTICOLLINEARITY DETECTION 

 

 It is fully understood that the presence of multicollinearity (M/C) may 

cause a failure in estimating the least squares estimates due to indeterminate 

coefficient estimates and  infinite variances. Thereby, the seriousness of the 

effects of perfect or near multicollinearity seems to rely on the degree of inter-

correlation as well as on the overall correlation coefficient. These effects, 

consequently, may misguide or mislead our decision in specifying and 

estimating the model. Thus it is a benevolent step to detect the presence of 

multicollinearity before postulating the model. 

 There are several ways to detect the presence of multicollinearity. 

Koutsoyiannis (1984) proposes some methods to test whether or not 

multicollinearity exists, that is, by employing Frisch’s Confluence Analysis
11

 or 

by applying the experimental work of Farrar-Glauber. In the Frisch’s Analysis, 

the procedure is to regress the dependent variable on each one of the 

independent variables separately. Hence, we obtain all the elementary 

regressions and then examine the results based on a priori and statistical 

criterion. In this examination, we analyze the effects on the individual 

coefficients, standard errors and coefficient of determination (R
2
) when 

inserting additional variables.  Further, in general cases, Greene (1990) 

underlines this Frisch’s Analysis by observing the changes of the parameter 

estimates, the significance of the estimated coefficients, and the signs of the 

coefficients which reflect the magnitudes among independent variables. This 

observation is useful to distinguish whether or not the highly correlated 

regressors exist. Thus it is helpful to note that the Firsch’s Confluence Analysis 

and the observation proposed by Greene is quite invariant for multicollinearity 

tests.  

 Finally, the Firsch’s Analysis concludes the method for 

multicollinearity tests by classifying a new variable as useful, superfluous, and 

detrimental.
12

 This classification indeed signals whether or not 

multicollinearity presents. 

 Another method for multicollinearity  tests proposed by Koutsoyiannis 

is the statistical work of Farrar-Glauber. In this approach, Farrar- Glauber 

assume that there is only perfect multicollinearity in a function. Consequently, 

                                                      
11

 It is also mentioned as Bunch-Map Analysis. 
12

 In this method, Frisch notes that a variable is considered to be useful if it improves R
2
 

without showing the individual coefficients unacceptable (wrong) on a priori consideration; it is 

superfluous if the variable does not improve R
2
 and does not influence to any considerable 

extent on the values of the individual coefficients; finally, it is considered as detrimental if the 

new variable affects considerably the sign or the values of the estimated coefficients. Fore more 

details, see Koutsoyiannis (1984, p. 239) 
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it is not surprising that Farrar-Glauber employ three statistical considerations 

related with the function’s observation for such multicollinearity tests. These 

statistics are a  Chi Square test for detecting the presence of multicollinearity in 

a function,  an F test for locating which variables are multicollinear, and a t test 

for finding out the pattern of multicollinearity. It can be concluded that the 

Farrar-Glauber method for detecting multicollinearity is based only on the 

correlation coefficients of the independent variables. This method obviously 

ignores measuring the strength of dependence of Y on the Xs. It is a fact, 

however, that the effects of multicollinearity depend partly on the overall 

coefficient of determination ( Y.X ...X

2

1 kR ). Therefore, it seems that the Farrar-

Glauber method may contain some weaknesses. 

   Because some methods for multicollinearity tests may possess some 

weaknesses, for example the Farrar-Glauber method, it is not astonishing that 

Judge et al (1985) advocate different steps to detect the presence of 

multicollinearity. In their suggestion, Judge et al propose to analyze the 

characteristic roots and vectors of X'X for revealing the presence and the nature 

of multicollinearity in a sample with poor design. In their proposals, Judge et al 

feel more confident to employ the spectral decomposition of X'X for 

multicollinearity tests rather than to employ the Farrar- Glauber method. 

 In particular, the spectral decomposition of X'X is as follows: 

 

 X'X = 
i 1

k



   i 
i

p  
i

'

p   ……………………………………………(3) 

This spectral decomposition will be more intellectually accurate to detect 

multicollinearity because it cannot only isolate which variables are interrelated 

but it also deals with the issues of what constitutes a “small” characteristic root 

whether collinearity is harmful  (Judge, 1985, p. 902). To some extent, Belsey, 

Kuh and Welsch (1980) also advocate a similar analysis called the singular 

value decomposition.
13

 

 Because computer programs often print out X' X , we can apply to the 

computation of the eigenvalues of X'X s.t  X' X = 1 2 ... k. In this sense, a 

small determinant means that some (or many) of the eigenvalues will be small 

(Johnston, 1984). Accordingly, this implies that Xpi   0. Therefore, we can 

hopefully identify the “true” linear dependencies between the columns of 

matrix X. But this eigenvalues computation should not end up until this step. 

This computation must be followed by another analysis such as variances 

                                                      
13

 See Johnston (1984, p. 249). 
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calculation since the eigenvalues only give a little help in assessing effects on 

the individual coefficients.  

 Additionally, Johnston (1984) and Greene (2005) suggest that the most 

useful single diagnostic way for multicollinearity tests is the application of 

coefficient of determination ( i

2

R ). In the multiple regression, total sum of 

squared deviations for Xi  (TSSi) determines the minimum sampling variances 

that might be achieved for bi. The variance of bi is as follows: 

 Var [bi] =  
2 

/ [(1- R i

2 ) TSSi] ……………………………………….(4) 

where R i

2 is the R
2
 in the regression of x1 on the other independent variables in 

the regression. Any linear relationship in the sample data will increase all 

sampling variances, but the magnifications for different coefficients will be 

indicated by a comparison of the R i

2 s.  

 It is evident that the role of these R i

2 s is relatively essential. In particular 

cases, the simple correlations among the variables may not give an adequate 

indication of the problem. In this case, in spite of having low correlation of the 

variables
14

, the indication of collinear problems can still be determined  by the 

corresponding R
2
 in the regression. If the corresponding R

2
 is found to be 

small
15

, this implies that further analysis is required before estimating the 

model. In a practical sense, this is handled by measuring Tolerance (1- R i

2 ), 

which should be greater than 0.1 and Variance Inflation Factors (VIF) as 

(1/Tolerance), which should be less than 10 to indicate non-existence of 

multicollinearity (Hair et. al, 1998, Hair et.al, 2006, Malhotra, 2004, Sekaran, 

2003). 

 An alternative test for multicollinearity has been developed by Belsley, 

Kuh and Welsch (1980). In this test, Belsley et al advocate the combined 

application of two diagnostic tools, namely, the condition number of the X 

matrix and the regression coefficient variance decomposition. These tools 

obviously represent the two-step procedures recommended by Belsley et al for 

detecting the most collinear affected coefficients.  

 The condition number of the X matrix is the square root of the ratio of the 

maximum to the minimum eigenvalues (characteristic roots) s.t. 

  

                                                      
14

 Some authors, for example Greene (1990), denote r<0.5 is considered to be low.   
15

 In this example, Greene (1990) remarks that we should be concerned about multicollinearity 

if the overall R
2 

in the regression is less than any of the individual R i

2
we have been 

considering.  
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 (X) = 




max

min

  ……………………………………………..(5) 

where max and min denote the maximum and minimum characteristic roots of 

X'X respectively. The condition number of the X matrix, (X), is indeed a 

measure of the sensitivity (elasticity) of the b estimators to changes in X'Y or 

X'X. Further, Greene (2005) remarks that because the eigenvalues rely on the 

scaling of the data, we should standardize the X matrix by dividing each 

column of X by (x 1

' xi )
½. If the columns of X are orthogonal

16
, the condition 

number will be unity. But, this number, (X), will be greater than one if there is 

collinearity between the columns. Hence, we can conclude that the greater the 

intercorrelation among the variables is, the higher (X) will be. Finally, Belsley 

et al (1980) intellectually advise that collinearity problems may appear when 

(X) is greater than 20.
17

 

 The second procedure recommended by Belsley et al  is the regression 

coefficient variance decomposition. In this computation, we should inspect the 

proportions of the sampling variance of each bi associated with those 

characteristic roots. The variance of this single coefficient bi  is as follows: 

 Var [bi ] = 
2
 ki

ii

k
2

p



1

 ………………………………………………(6) 

As a result, we may compute the proportions of var  [bi ] associated with any 

single characteristic roots (i). This proportion, in turn, reflects the presence of 

multicollinearity. Following Judge et al (1985), the proportions are 

 ki = 

ki

i

ki

ii

k

p

p

2

2

1







  ……………………………………………….(7) 

The presence of two or more large values of ki indeed indicates that 

multicollinearity may influence the precision of estimation of the related 

coefficients. The values of ki in excess of 0.50 are likely to be large for this 

purpose (Belsley et al, 1980, p. 100-108) so that we can confirm which 

variables are seemingly interrelated. Therefore, this analysis is useful to 

                                                      
16

 It is important to recall that when the columns are orthogonal, the individual R i

2
becomes 

zero. 
17

 This is also called as a “danger” level.  
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indicate which coefficients’ variances are adversely affected by the 

multicollinearity.
18

 

 The other way to detect is by employing a Theil’s measure (m). The 

formula of a Theil’s measure is as follows: 

 

 

where R
2
 is coefficient of determination which can be obtained by taking a 

regression of dependent variable and its explanatories, while 2

iR  is a squared 

multiple correlation of taking a regression between dependent variable and its 

explanatory variables excluding Xi.  A Theil’s measure closes to zero indicates 

no multicollinearity (Ghosh, 1991, Maddala, 1992, and Pindyck and Rubinfeld, 

1998). 

 In short, the rules of thumb to detect M/C are that we may have high R
2
 

as well as significant F statitistic value but few (if not none) significant t ratios 

also high pairwise correlation among regressors (Malhotra, 2004, and 

Widiyanto, 2004). 

 However, all detection techniques here are rather useless as they only 

indicate the presence of multicollinearity (Gosh, 1991, and Maddala, 1992). 

This is just a complaining detection technique without offering a solution how 

to rectify the problem. Even, these techniques cannot locate systematically 

which explanatory variables are the cause for multicollinearity. What should 

we do then becomes the next issue. 

 

 

V. SOME SOLUTIONS TO MULTICOLLINEARITY PROBLEM 

 

 Several methods have been proposed for rectifying this multicollinearity 

problem. Of course, one of the proposed remedies is to correct the model. As in 

equation (1), we can easily drop variables suspected of causing the problem 

from the regression because a decision on adding more data which are simply 

the same
19

 is no help in multicollinearity remedy. But, in doing so, we should 

be careful because we may come upon the problems of specification such as the 

                                                      
18

 Although this analysis is quite practical, some authors find some flaws in this method, for 

example, small eigenvalue doesnot always mean that our least squares estimator may have 

the same imprecision for each of the parameters. It is possible that the k th coefficient is not 

affected by a small eigenvalue as long as the elements of the i th row of the k x k matrix that 

diagonalized X'X, pki, is small. Hence, the collinearity relationship may not be happened in 

the k th variable. For more details, see, for example, Judge et al (1985, p. 903-904). 
19

 Also, it is very common that there are difficulties to get better data. But, the joint use of time-

series and cross-section data sometimes will be helpful. For an example, people do this 

combination data in the analysis of demand functions. See Johnston (1984, p. 250-251).   
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biased estimators.
20

 Hence, we should make some considerations about our 

dilemma. 

 Due to the flaws in omission of (relevant) variables, a number of other 

approaches have been suggested. Judge et al (1985) classify the purely 

mechanical approaches to solve multicollinearity into two types, namely, 

traditional and non traditional solutions. In the traditional solutions, at least two 

approaches are offered by econometricians to handle this multicollinearity 

problem such as the ridge estimation and principal components.
21

 In addition, 

the works of  Stein and its extensions are good examples for non traditional 

solutions to the multicollinearity problem. In this paper, however, the primary 

discussion is on traditional solutions because not only does this paper become 

very long but also only few econometricians deal with non traditional solutions 

to multicollinearity problem.
22

 

 Ridge regression was originally employed to investigate the sensitivity of 

least square estimates based on particular data presumably indicating near-

extreme collinearity.
23

 But, this ridge regression recently is conceived to be a 

“rectified estimator” probably with sufficiently smaller variances than those of 

the least squares estimates.  

 In discussions of ridge regression estimator, we consider the linear 

regression model Y = X +  as well as assume that X is standardized s.t X'X is 

the matrix of simple correlations among the independent variables. The 

generalized ridge regression estimator of  is as follows:
24

 

 
~
b = (X'X + k I)

-1
 X'Y  ………………………………………(8) 

where k > 0 is the scalar chosen arbitrarily.
25

 One property of  the ridge 

regression is that although it is a biased estimator, its variance is less than the 

least squares estimator’s variance. In this analysis, we can view easily that 

expected ridge estimator (E[
~
b ]), after substituting Y into X +  and assuming 

E[] = 0, is as follows: 

 E[
~
b ] = (X'X  + k I)

-1
 X'X ……………………………………... (9) 

Thereby, its variance becomes 

 Var [
~
b ] = 

2
 (X'X + k I)

-1
 (X'X) (X'X + k I)

-1
  ……………………. (10) 

                                                      
20

 For proof, see Greene (1990, p. 259-261). 
21

 See also (Greene (1990), Johnston (1984) and Schmidt (1976). 
22

 To some extent, if readers want to apply this non traditional solutions, extensive discussions 

in Judge et al (1985, p. 922-927) will be good example. 
23

 The term of “Ridge Regression” was firstly proposed by Hoerl and Kennard. See, for 

example, 

 Hoerl and Kennard (1970) and Judge et al (1985) 
24

 See, for example, Schmidt (1976), Johnston (1984), Judge et al (1985) and Greene (1990). 
25

 If k = 0, the estimator becomes the Least Squares estimator. 
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This simply means that the ridge regression estimator’s variance is smaller than 

that of the ordinary least squares estimator.
26

 Indeed, this raises the possibility 

that its mean square error may be less than the OLS estimator’s mean square 

error (Schmidt, 1976). It is, however, difficult to determine the value of  k. To 

some extent, we can try various values of  k to stabilize the 
~
b  vector. For 

example, we may choose, say k = 0.01, and then try successively larger values 

until the coefficients stabilize.
27

 Further, Judge et al (1985) give an excellent 

discussion for selecting values of  k for use in 
~
b .

28
 In this k values selection, 

Schmidt (1976) comments that the larger k, the larger is the bias of 
~
b , but the 

smaller is its variance, accordingly, the ridge regression mean error square error 

becomes smaller. Therefore, it produces an estimator superior to least square.
29

 

Unfortunately, Greene (2005) and Judge et al (1985) note that the mean square 

error (MSE) is problematic to be a beneficial measure because it is a function 

of the unknown parameters that we are undertaking to estimate. Consequently, 

as a practical matter, we may not take an inference about  without any MSE 

improvement.  

 Johnston (1984), to some extent, advocates an MSE improvement by 

dropping one or more explanatory variables. In sodoing, we construct a three-

variable model, s.t.  

 y = 2 x2 + 3 x3 +  ……………………………………………..(11) 

where the variables are expressed in deviation form.
30

 From equation (11), we 

can verify that variance of b12 is smaller than it of b12.3.
 31

 Thereby, we can 

make a trade off between biasedness and variance. Because the mean square 

error is the sum of sampling variance and square bias, we can compare MSE 

                                                      
26

 As Var[] = 
2
 (X'X)

-1
 and k > 0, {Var[] - Var[

~
b ]} is certainly positive semidefinite.   

27
 In determining the values of k, Judge et al finally conclude the works of Hoerl and Kennard 

(1970) and Theobald (1974), namely, k < 
2
/ 

max

2
 (where 

max

2
is the largest element of the 

vector  = P'  and P is the matrix whose columns are orthonormal characteristic vectors of 

X'X s.t PP' = ) or k < 2
2
/ ' respectively. 

28
 Judge et al discuss extensively proposals for determining values of k, namely, adaptive 

ordinary ridge estimators (by employing, for example the ridge trace) and adaptive generalized 

ridge estimator (by applying, for example an operational version of the optimal choice). They 

denote the ordinary ridge estimator to be b
*
(k) and the generalized ridge estimator firstly 

introduced by Hoerl and Kennard to be b
*
(D) where D is a diagonal matrix of constants s.t di  

0 where for any arbitrary values, di = k.      
29

 Judge et al call this estimator as an adaptive ridge estimator. 
30

 Deviation form is  -  . But, this disturbance deviation has no effect on derivations so we 

may ignore it.     
31

 Recall that b12 and b12.3 are OLS estimate of 2 . But, the first is a slope of simple regression 

y on x2; while the latter is a slope of multiple regression y on x2 in the presence of x3. Both are 

not necessarily the same.    
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(b12) and MSE (b12.3) to come across which one has smaller MSE. Once we 

know the smallest MSE, we can drop such variable(s) causing unstable 

coefficients and accomplish a regression to get the minimum variance. In our 

example, Johnston (1984) compares both MSEs so that 

 
MSE(b )

MSE(b )

12

12.3

= 1 + 23

2 2

r 1 

 


  ………………………………………………

(12) 

where the 
2 

 statistic is the ratio of the true (but unknown) 3 to the true 

variance (not the estimated) variance of b13.2 . In this computation, the 
2
 

statistic is as follows: 

 
2
 = 

 
3

2

2

3

2



 x r 1
23

2
 = 3

2


Var(b )13.2

 ……………………...(13) 

Consequently, from equation (12), it is obvious that MSE(b12) will be less than  

MSE(b12.3) if 
2
 is less than unity.  

 Moreover, Johnston (1984) adds that if we wanted to get an estimate of 2 

as precise as  possible and had a strong belief that 
2 

 was less than one, it 

might be reasonable to drop x3 from the regression and might easily accomplish 

a regression of y on x2. But, of course, it is very difficult to determine 
2
. It is 

unknown. Hence, as his exhaustive study of the three- variable model, Johnston 

concludes that the best procedure is to carry out the direct OLS regression of y 

on x2 and x3 unless we believed that 
2
 < 1, we might omit the variable.  

 This approach will be quite useful in improving MSE for only three-

variable case. It is, however, not only unsuitable when dealing with the m- 

variable case but also dubious while omitting variable(s).
32

 It is not surprising 

if some authors suggest to impose a set of linear restrictions on the coefficients 

for improving MSE. In doing so, Johnston writes the usual linear model s.t. y = 

X +   with the set of q ( m) restrictions
33

 organized in R = r. The 

estimator following these restrictions is as follows: 

 bJOH  = b + (X'X)
-1

 R' [R (X'X)
-1

 R']
-1

 (r - Rb) …………………….. (14) 

where b is the unrestricted OLS estimator. From this model, we can conclude 

that bJOH has better MSE than b if any quadratic form in MSE(bJOH) is less than 

or equal to the quadratic form in MSE(b) s.t. 

 k' MSE(bJOH) k    k' MSE(b) k  ……………………………... (15) 

for any nonnull m-element vector k; and the sum of the MSEs of the restricted 

estimators is less than or equal to it of the MSEs of the unrestricted estimators 

s.t. 

  

                                                      
32

 See Greene (1990) for an example flaw in omitting variable(s).  
33

 Note that m is the number of variables. 
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tr MSE(bJOH)  tr MSE(b) .....................................................................(16) 

 

Both conditions, equation (15) and (16), being the strong and weaker criterions 

respectively are already investigated by many authors, as in Johnston. To some 

extent, Johnston (1984) recites that the strong criterion, equation (15), will be 

satisfied if F = 


q
 where 

  = 
 (r R ) (r R )






 



' ( ' ) '
1

2

1

2

R X X R
  ? ……..(17) 

Hence, it is simply to deduce that the F statistic will be a useful value to 

distinguish which estimators are better in MSE.  

 Explicitly, Johnston (1984) summarizes the practical procedure for 

employing this F statistic as follows:
34

 

1. Compute the usual F statistic, based on the difference in the sum of squared 

errors from the restricted and unrestricted regressions. 

2. If F > F(q, n-m)0.95, say, in the Wallace and Toro-Vizcarrondo table, reject 

the hypothesis that the restricted estimators are better in MSE. If F < F(q,n-

m)0.95, use the restricted estimators. (Please see also Cooper and Schindler, 

2006) 

Thus the test for the improvement in MSE is to compare the sample F statistic 

with a critical value tabulated by Wallace and Toro-Vizcarrondo (1969). 

 Fortunately, some authors find that the restricted estimators own smaller 

variances than the unrestricted OLS estimators. But, it is worth noting that the 

restricted estimator may probably be biased if the restrictions are not correct. 

Despite the fact that we might have a biased estimator, we finally come across 

the trade off between bias and variance as being our previous dilemma. 

Therefore, hopefully, we are able to find out the smallest MSE in our model to 

get the ridge estimators for dealing with multicollinearity.   

 An alternative approach coping with multicollinearity is principal 

components. The primary usefulness of principal components analysis lies in 

its function as an exploratory tool. It can mitigate the effects of 

multicollinearities in the data and advocate useful data transformations (Judge 

et al, 1985, p. 912). Unlike the ridge estimation which is purely mechanical, the 

appeal of principal components is more intuitive. [To some extent, a discussion 

                                                      
34

 This is for the strong MSE criterion. For the weaker strong criterion, equation (16) will be 

satisfied if    q/2. The F critical values utilize the table tabulated by Goodnight and Wallace. 

See Johnston (1984, p.258) and Goodnight and Wallace (1972).  
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of principal components in this paper is primarily summarized from extensive 

studies of Judge et al (1985) and Greene (2005).]  

 Judge et al (1985) compose that principal components regression is 

basically a method of inspecting the sample data or design matrix for directions 

of variability and using this information to reduce the dimensionality of the 

estimation problem. This reduction can be attained by imposing exact linear 

constraints which are sample specific, but have certain maximum variance 

properties making their use attractive.  

 Please consider the transformation model from our usual linear model as 

follows: 

 

 y = XPP' +  = XP +  = Z +   ……………………………... (18) 

 

where P is a (K x K) matrix whose columns (pi) are orthogonal characteristic 

vectors of X'X associated with 1 (the largest characteristic root) and Z is the 

(T x K) matrix of principal components s.t. zi = X pi. The principal components 

estimator of  is obtained by deleting one or more of the variables zi. As we 

apply OLS and make a transformation to the original parameter space, we can 

partition Z into two parts Z1 (to be retained) and Z2 (to be deleted) imposing an 

identical partitioning on P. Accordingly, after some manipulations, the 

principal components estimator can be obtained by an inverse linear 

transformation. Since we delete the components in Z2 (so P22 = 0), the 

principal components estimator of  is 
*
 = P11 = P

*
. This estimator is 

actually known to have smaller variances than the least squares estimator, b, 

but it is biased unless the restrictions  2

'

P    = 0 are true. Hence, it seems that 

the principal components estimator is likely the same as the ridge estimator 

although either has different approach.   

 The next procedure of principal components regression deals with how to 

select deleted components and to understand the consequences of such 

deletion. In doing this procedure, Judge et al (1985) and Greene (2005) suggest 

to compute and find out “small” characteristic roots from Z2  (this is to preserve 

the variability in the sample data when reducing the dimensionality of the 

estimation problem) and to employ test of hypotheses of the sample specific 

restrictions 2

'

P   = 0 using classical or MSE tests (this is to test whether or not 

linear dependencies “almost” hold for population variables).  

 Finally, Greene (2005) concludes that the use of principal components is 

an attempt to extract from the X matrix a small number of variables that 

account for most or all of the variation in X. But he also notes that there are 

problems with using this estimator such as producing the failure of all ad hoc 



Fokus Ekonomi – Vol. 5 No.2 – Agustus   2006 

 
 
 

  127 

data search procedure as principal components are not chosen on the basis of 

any relationship of the regressors to y and ambiguous interpretation  of the 

results. 

 

VI. CONCLUSION 

 

 Multicollinearity is an econometric condition when the measured 

variables are highly intercorrelated. This condition makes us difficult to 

analyze the individual effects of such measured variables. As discussed earlier, 

multicollinearity becomes a latent problem in estimating and deducing the 

results. It causes either identification or precision problem. Thus it looks that 

the discussion of multicollinearity is not very comforting. 

 There are two degrees of multicollinearity, namely perfect and near 

multicollinearity. Perfect multicollinearity seems to be modeling dilemma 

while near multicollinearity presumably deals with data problems. Indeed, it is 

not easy to identify multicollinearity. Fortunately, some econometricians find 

some approaches in detecting the presence of these multicollinearities. For an 

example, Belsley et al develops an excellent technique to measure this 

multicollinearity by computing the condition number of  matrix and the 

regression coefficient variance decomposition, while Theil proposes a Theil’s 

measure. However, all proposed techniques seem to be of no use as they cannot 

further show how to solve multicollinearity. 

 Nevertheless, after detecting the presence of multicollinearity, we can 

solve this problem by employing some solution procedures which are not 

related with the suggested detection technique. Though, there are at least two 

solutions to rectify the problem such as traditional and non traditional 

solutions, this paper only focuses on discussing traditional solutions. In the 

traditional solutions, we conclude that both the ridge regression and the 

principal components regression are a sound technique to solve the 

multicollinearity problem. Although both techniques are adequate, the ridge 

regression is mechanically better than the principal components regression. As 

the ridge regression deals with minimum variance in the regression, 

econometricians suggest that if the presence of multicollinearity does not 

reduce model performance (goodness of fit), they might ignore the presence of 

multicollinearity in a proposed regression model. 
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